Rokotteet ja geenimutaatio

kirjoittanut Harold E. Buttram, MD; Susan Kreider, RN; Alan R. Yurko lokakuu 11, 2002

Johdanto

Tämä artikkelin kirjoittajat eivät esitä olevansa auktoriteetteja genetiikan tai immunologian aloilla. Maallikkona olossa on se etu, että kun asiaa tarkastelee etäältä, voi joskus havaita asioita jotka jäävät asiantuntijoilta huomaamatta, jotka ovat kiinni oman alansa yksityiskohdissa ja monimutkaisuuksissa. Tämä voi olla totta puhuttaessa rokotteiden vaikutuksista immunologiaan ja genetiikkaan, joista tiede oikeasti tietää aika vähän.

Tämä artikkeli käy läpi kolmen alan asiantuntijan, LT John Martinin, tri. Howard B Urnovitzin ja tri. MG Montinarin työtä, joista käy ilmi varsin vakuuttavat näytöt sille, että joiltain rokotteiden saaneilta potilailta löytyy geneettisiä muutoksia, joiden reaktiot vaikuttavat liittyvän rokotteiden kausaalimekanismiin. Tässä ei esitetä väitteitä, että tämä evidenssi olisi vedenpitävä todiste rokotteiden aiheuttamista geneettisistä muutoksista. Se mitä me toivomme esittävämme on näiden tutkijoiden työ, eli että on sekä mahdollista että uskottavaa, että nykyiset lapsuusajan rokoteohjelmat saattavat aiheuttaa laajamittaisia geenimuutoksia, mikä mahdollisesti vaikuttaa laajalti omiin lapsiimme.

Todistustaakka rokotereaktioista ei tulisi levätä vanhempien harteilla, niinkuin se tällä hetkellä lääketieteellis-juridisessa systeemissämme on. Todistustaakka rokotteiden turvallisuudesta; eli että rokotteet EIVÄT aiheuta negatiivisia geenimuutoksia, tulisi olla valmistajien, liittovaltion ja valtion viranomaisten sekä tällä hetkellä rokotteita antavien koulujen harteilla. Ennen kuin tämä asia on selvitetty, onko kenelläkään millään tasolla yhteiskuntaamme oikeutta pakottaa yhä vain suurempaa määrää rokotteita lapsillemme?

Perustietoa immunologiasta

Vaikka ihmisen immuunijärjestelmän tekniset yksityiskohdat ovat äärimmäisen monimutkaisia, perusoperaatiot ovat olennaisesti yksinkertaisia ja niitä voitaisiin verrata keskiaikaiseen linnaan. Tätä analogiaa käyttäen, ensin saattaa olla muutama etuvartioasema, sitten vallihauta, sitten päärakennuksen seinä, ja lopulta sisemmät puolustukset linnan ympärillä, jossa sisällä kuninkaalliset asuvat. Kuninkaalliset tässä tarkoittavat ihmisen geneettistä järjestelmää, jota immuunijärjestelmä on suunniteltu suojelemaan kaikin tavoin.

Etuvartiot tarkoittaisivat lymfosyyttejä (yhdenlaisia valkosoluja), joita kutsutaan “muistisoluiksi” koska ne muistavat tunkeutujille altistumisen. Altistuminen käynnistää kloonausprosessin tulevien altistusten varalta. Päärakennuksen seinämää esittää hengitysteiden ja suolen limakalvot, ja sisäpuolustusta vasta-aineita tuottavat veren plasmasolut (ja muut valkosolut), jotka ovat luuytimessä.

Immuniteetti

Soluvälitteinen immuniteetti

Ihmisevoluution lukemattomien vuosituhansien aikana limakalvojen soluvälitteinen immuniteetti ihmiskehossa on ollut pääasiallinen sisääntuloreitti sairauksia aiheuttaville mikro-organismeille ihmiskehossa, ja täten evoluution myötä limakalvot ovat kehittäneet kehoon suuren puolustusjärjestelmän. Nämä limakalvot on pinnoitettu “antiseptisella pinnoitteella”, joka koostuu miljardeista ja biljoonista molekyyleista immunoglobuliini A -vasta-aineita, joiden rooli on tunnistaa jokainen ohitse kulkeva molekyyli, sisäelinten tapauksessa jaotella ravintoaineet, ja pysäyttää kaikki tunnistamattomat aineet, mm. epätäydellisesti sulaneet ruoka-aineet. Vaadittaisiin useita suuria tietokoneita pääsemään tämän järjestelmän älykkyyden tasolle. Kaikki toimii erittäin ohuen (ja tyhmän) vatsan limakalvon sekä useiden myrkyllisten aineiden välillä, jotka muuten menisivät läpi limakalvosta verenkiertoon. Antiseptisen pinnoitteen lisäksi limakalvojen puolustusmekanismin päätoimija infektioita aiheuttavia mikro-organismeja vastaan on soluvälitteinen immuniteetti, jonka vaikuttavat aineet ovat fagosyyttiset makrofaagit (syöjäsolu) ja sytotoksiset T-lymfosyytit (imusolu).

Vasta-aineimmuniteetti

Sisäisiä puolustusmekanismeja esittää plasmasolut luuytimessä, jotka tuottavat vasta-aineita, mikä normaalisti toimii sekundäärisenä kehon puolustusmekanismina. Se käynnistyy limakalvojen soluimmuniteetin lisänä, tai pääasiallisena puolustusmekanismina kun soluimmuniteetti on pettänyt. Tähän immuniteettiin viitataan vasta-aineimmuniteettina. Plasmasolut voivat tuottaa

(1) Makroglobuliineja, jotka ilmaantuvat akuutin infektion esiintyessä ensimmäisenä, jotka ovat primitiivisempiä ja jotka toimivat yleisluonnollisena antibioottina;

(2) Immunoglobuliini G vasta-aineet, jotka ovet erittäin spesifisiä tiettyä ulkopuolista tunkeutujaa vastaan ja ilmaantuvat jonkin verran myöhemmin infektion edetessä kloonausprosessin käynnistyttyä ja

(3) IgE vasta-aineet, jotka saavat aikaan allergioita.

Lastentautien rooli

On olemassa koulukunta, jonka mielestä niinkutsutut entisaikojen lastentaudit, mm. erilaiset rokot (tuhka-, vesi- jne.), jotka ovat päässeet kehoon limakalvojen kautta, ovat olleet tarpeellisia ja niillä on positiivinen tarkoitus näiden limakalvojen immuunijärjestelmän kehittämisessä ja vahvistamisessa. Rokotteet sitä vastoin injektoidaan suoraan kehoon, mikä ohittaa limakalvot ja jättää näiden kautta syntyvän immuniteetin suhteellisen heikoksi ja kitukasvuiseksi.

Sekä The New England Journalissa (1) että Thorax-julkaisussa (2) on julkaistu artikkeleja, joissa sanotaan että terveellä immuunijärjestelmällä on “bias” soluvälitteistä immuniteettia kohtaan, kun taas ihmisillä joilla on allergioita, astmaa, autoimmuunisairauksia on vasta-ainedominantti immuunijärjestelmä. On myös osoitettu, että kun jompi kumpi näistä tulee dominantiksi, on vaikeaa vaihtaa järjestelmästä toiseen. (3)

Geenien vaihdanta ympäristön kanssa

Barbara McClintock, vuonna 1983 Nobel-palkittu “Corn Lady”, ensimmäisenä havaitsi niinkutsuttujen hyppygeenien geneettisen liikkuvuuden 1930-luvulla. Yli 50 vuotta hän teki yksin tutkimusta maissin parissa, ja selvitti erään luonnon kaikkein syvimmistä salaisuuksista.

McClintock tutki intiaanimaissia, jossa punaisten ja keltaisten maissinjyvien jakauma määräytyy geneettisesti. Hän havaitsi, että jotkut geenit liikkuivat paikasta toiseen solun kromosomeissa (kuin rukousnauhan helmet). Sitten hän näki liikekuvioita, jotka erosivat kovin värillisten jyvien liikkeistä, ja tajusi että jotkut geenit, kun ne ovat kulkeutuneet tiettyyn paikkaan, kytkivät geenejä päälle tai pois. Siitä seuraa, että vaikka useimmat geenit ovat työläisiä, jotkut geenit olivat näiden johtajia.

World Medicinen artikkelin mukaan (syyskuu 22, 1971, s. 69-72; New Medical Journals, Clareville House, Oxendon St., London), Genevan yliopiston tutkijat olivat tehneet hämmästyttävän havainnon, että verenkiertoon päätyvät biologiset aineet muuttuvat todella osaksi meitä ja jopa geenejämme. Artikkelissa sanotaan:

“Kun japanilaiset bakteriologit saivat selville, että yhden lajin bakteerit siirsivät oman erittäin omalaatuisen antibioottivastustuskykynsä kokonaan täysin toiseen lajiin, he vaikuttivat törmänneensä johonkin täysin uniikkiin ellei sitten hämmästyttävään ilmiöön. Tri. Maurice Stroun ja tri. Pilippe Anker, yhdessä kollegoidensa kanssa kasvifysiologian laitokselta Genevan yliopistosta keräsivät mittavasti todisteita siitä, että geneettisen informaation siirtäminen ei rajoitu pelkästään bakteereihin, vaan se voi tapahtua myös bakteerien välillä sekä kasveilla ja eläimillä.”“Genevalaiset tieteentekijät ovat vakuuttuneita, että normaali eläin- ja kasvisolu voi myös levittää DNA:ta ja että tämä DNA kulkeutuu muihin soluihin organismissa. Jos he ovat oikeassa, silloin sillä on merkittävästi vaikutusta käytännössä jokaiseen solun aineenvaihdunnan aspektiin. Se vaikuttaisi organismin kasvuun ja kehitykseen, sairauksiin ja jopa organismin evoluutioon.” “Tri. Maurice Stroun ja hänen kollegat tekivät suurimman osan tutkimuksista kasveilla, mutta he ovat nyt siirtyneet eläimiin. Viimeisimmässä kokeiden sarjassa he käyttivät sammakoiden eristettyjä sydänkorvakkeita.” (4)

Tulokset ovat kiistämättömiä. He saivat selville, että RNA-DNA (ribonukleiini-deoxyribonukleiini) hybridisaatiolla on suuri suhteellinen osuus samalta lajilta kerätyn bakteeri-DNA:n ja titratun sydänkorvakkeista kerätyn RNA:n välillä. (DNA, joka on kaikkien solujen tumassa oleva ominaisnukleiinihappo, on olennainen molekyyli, joka kantaa mukanaan kehon solujen geneettisen koodin.)

“Koska me tiedämme, että mikään bakteeri ei ollut päässyt sammakoiden sydänkorvakkeisiin, me voimme ainoastaan todeta että bakteeri-DNA:n on ollut erityttävä bakteereista ja eläinsolut olivat ne absorboineet”, Stroun sanoo.“Tämä siirtymäilmiö, tai transkensio, kuten tri. Anker sitä nimittää, on erittäin todennäköisesti yleinen, muutoin hän ja tri. Stroun eivät olisi todennäköisesti onnistuneet siinä ensi yrittämällä, että eläinkudokset syntetisoivat bakteeri-RNA:ta…” “Tämän työn seuraamukset transkeesiolle ovat jättiläismäiset, sillä genevalaisten työ vihjaa, että ilmiö on käynnissä koko ajan — jopa omissa kehoissamme… Voisiko esimerkiksi reumaattisen kuumeen johdosta seuraava sydänvaurio ja samanlainen bakteeri-infektio olla seurausta reumaattisesta kuumeesta ja samanlaiset bakteeri-infektiot voivat olla seurausta kehon immuunijärjestelmän reaktiosta siihen, että omat solut tuottavat vierasta RNA:ta?”

Ankerin ja Strounin myöhemmät tutkimukset vahvistivat raportin havainnot. (5)

Geneettinen hybridisaatio

Puhtaan geneettisenä materiaalina olisi odotettavissa, että virukset ovat alttiimpia geenihyppäysprosessille kuin muut mikro-organismit. Seuraava julkaisu tukee tätä hypoteesia: tuman polyhedroosiviruksen 24 näytteen tutkimuksessa niiden viljelmissä oli viruksen palasten sekä lisäyksiä että poistoja, mikä puhuisi sen puolesta että virus sekä on antanut geneettistä materiaalia soluun että vastaanottanut geneettistä materiaalia solulta, jossa se on viljelty, mikä näin myös viittaisi siihen mahdollisuuteen, että samanlaista virusvaihdantaa tapahtuu ihmisillä (oma tulkinta). (6)

Toinen mahdollinen virusinfektioiden (oletettavasti myös virusrokotteiden) komplikaatio on, että tiettyjen virusproteiinien ja aivojen ja hermojen myeliinikudosten välillä on löydetty samankaltaisuuksia. (7) Tämän virusproteiinien ja hermojärjestelmän homologisten alueiden välisen samankaltaisuuden tuloksena immunologiset ristireaktiot voivat johtaa infektion tai rokotteen jälkeiseen enkefaliittiin, myeliittiin tai neuriittiin. Näihin viruksiin kuuluu tuhkarokko, Epstein-Barr, A- ja B-influenssa ja muut hengitystieinfektioita aiheuttavat virukset.

Tätä ajatusta kehitelläksemme, artikkelissa otsikolla “Vaccination and autoimmunity-‘vaccinosis’: a dangerous liaison?”, kirjoittajat huomauttavat rokotteiden “molekyylimimiikan” ongelmasta, jossa rakenteellinen samankaltaisuus virus-antigeenin ja oman itsen antigeenin välillä saattaa, kun aiheutetaan pieni modifikaatio antigeenin kudokseen, saada sen näyttämään vieraalta immuunijärjestelmälle ja näin se voisi olla vasta-ainetuotannon kohde” (myös autoimmuniteetin). (8)

Endogeeniset ja eksogeeniset hyökkäykset immuunijärjestelmää vastaan

Palataksemme keskiaikaisen linnan analogiaan, ihmiskeho voi sietää suuret määrät myrkkyjä, mutta kun ulkoiset puolustukset otetaan pois ja geenit jäävät suojaamatta, juuri tämäntyyppisessä skenaariossa voi esiintyä teoreettisesti geenivaurioita. Tilanteet joissa tällaiseen geneettiseen haavoittuvaisuuteen ajaudutaan ovat seuraavanlaisia:

• Konferenssissa vuosia sitten tri. H.H. Fudenberg, satoja tutkimuksia julkaissut maailmankuulu immunologi, lausui seuraavasti: “Yksi rokote vähentää soluvälitteistä immuniteettia 50%:lla, kaksi rokotetta 70%:lla… kolmoisrokotteet (MMR, DTaP) merkittävästi vahingoittavat soluvälitteistä immuniteettia, mikä altistaa toistuville virusinfektioille, erityisesti korvatulehduksille, sekä hiiva- ja sieni-infektioille.”

• Vakava ja/tai pitkittynyt stressi nostaa sekä endogeenista adrenaliinia että seerumin kortisonitasoja. On pitkään tiedetty, että kortisonilääkitykset tukahduttavat immuunijärjestlemää. Endogeeniset korkeat kortisonitasot voivat tehdä samoin.

• Myrkylliset kemikaalit kuten Persianlahden sodan syndroomassa (9) tai toksisten myrkkyjen kaatopaikat, joihin on yhdistetty synnynnäiset kromosomaaliset anomaliat näillä alueilla asuvilla asukkailla. (10)

• Ravinnevajeet, erityisesti foolihapon puute, joka on kriittisessä roolissa kromosomien tuotannossa ja korjaamisessa. Foolihaposta kertovassa monografissa LT Sidney M Baker kertoo, että syövän esiasteen kromosomivaurioita on löydetty soluviljelmistä, joiden viljelmänesteessä on vähän foolihappoa. Tupakoitsijoiden veren foolihappotasot ovat matalammat ja heillä on enemmän syövän esiasteen kromosomimuutoksia kuin ei-tupakoitsijoilla. (11)

• Kuten lastentautien peruskirjoissa kerrotaan, vauvat ja lapset, joilla ei ole paljoakaan immuniteettia, ovat suurelta osin riippuvaisia äidiltään saamista vasta-aineista noin ensimmäiset 6 kk syntymästä, sillä heidän imusolmukkeensa ovat pienet, heillä ei ole niin paljoa plasmasoluja luuytimessään eikä heidän immunoglobuliinituotantonsa ole suuri. Normaalisti arviolta 6v ikäsillä on tarpeeksi immuuniparametreja. Ainakin teoriassa, sillä immuunijärjestelmän epäkypsyys lapsuudessa tarkoittaa, että lapsen genetiikka on haavoittuvainen.

• Vaikka lopullinen näyttö on vajavaista, on paljon epäsuoraa näyttöä siitä että rokotteet saattavat vääristää ihmisen immuunijärjestelmää pois soluvälitteisestä immuniteetista, mikä on normaalisti terveellä ihmisellä dominantti, kohti heikempää vasta-aineimmuniteettia, mikä on yhteydessä allergioihin ja autoimmuunisairauksiin sekä kasvaneeseen haavoittuvaisuuteen viruksille ja sieni-infektioille. Tämä johtopäätös jää tuskin tekemättä koska suurin osa tällä hetkellä käytössä olevista ellei kaikki lapsuusajan rokotteet injektoidaan suoraan kehoon ja suunnataan vasta-aineiden tuotantoon luuytimessä. Ohittamalla limakalvot kehossa soluvälitteinen immuunijärjestelmä pysyy heikkona ja suhteellisen kitukasvuisena johtuen stimulaation puutteesta. Kuten aiemmin todettua, kun vasta-ainesysteemi muuttuu dominantiksi, niinkuin tutkimuksessa osoitettiin, dominanssi pyrkii pysymään.

Kummallakin systeemillä on identifioivat tuntomerkkinsä nimeltä sytokiinit (peptidejä jotka toimivat viestinvälittäjinä) ja tämä on se miten ne identifioidaan. Sudhir Guptan tutkimus 20 autistisella lapsella, sairaus joka monilla liittyy yhä useammin rokotteisiin, näytti konsistentisti vasta-ainesytokiinien määrän olevan koholla ja solusytokiinien matalalla. (12) Sen takia jos rokotteet vääristävät lasten immuunijärjestelmää tuomalla käyttöön vasta-ainevälitteisen järjestelmän erittäin haavoittuvaisena aikana elämässä, ne saattavat olla tuplasti tekemässä pahojaan geenimutaatioiden kannalta.

Stealth-virukset ja LT John Martinin työ

Stealth-virus on virus, joka saa aikaan pitkäaikaisen infektion ihmisissä usean vuoden ajaksi, eikä ihmisen immuunijärjestelmä löydä sitä johtuen sen geneettisestä sirpaloitumisesta ja geneettisten elementtien tilkkutäkkimäisyydestä. Tarina alkaa vuosia sitten, kun tri. Martin toimi FDA:n virusonkologian osaston johdossa, jossa hän löysi tuntematonta DNA:ta tuolloin valmistetusta suullisesti annettavasta poliorokotteesta. Myöhemmin hän sai tietää, että apinoiden sytomegaliavirusta (CMV) oli löydetty kaikista 11 afrikkalaisesta viherapinasta, joita oli tuotu poliorokotteen tuotantoon. (13)

FDA:lta lähdettyään tri. Martin toimi patologian professorina Etelä-Kalifornian yliopistossa. Siellä hän testasi verinäytteitä kroonista väsymysoireyhtymää, autismia ja muita neurosairauksia sairastavilta potilailta. Työ johti siihen, että hän löysi uniikkeja soluja tuhoavia viruksia, joita immuunijärjestelmä ei tunnistanut. Näitä kutsuttiin “stealth-viruksiksi”, joista jotkut selkeästi olivat peräisin apinoiden sytomegaliaviruksesta. Viruksilta puuttui tietyt geenit, joita ilmaisemalla ne saisivat aikaan immuunivasteita isännässä. (14-18)

Selitys kuuluu, että stealth-virus, joka tri. Martinin työn perusteella on peräisin CMV:n kontaminoimasta poliorokotteesta, oli muuttunut äärimmäisen herkäksi ja epävakaaksi, mahdollisesti useiden isännästä toiseen siirtymisen seurauksena kun rokotetta oltiin kehitetty. Epävakaampi virus teoreettisesti olisi paljon alttiimpi vaihtamaan materiaalia isäntänsä kanssa, josta lopulta tulisi eräänlainen geneettinen rubikin kuutio, jossa on tilkkutäkkimäisesti kaikenlaista materiaalia. Tämä tilkkutäkki pysyisi piilossa tartunnan saaneen isännän immuunijärjestelmältä.

Martin oli raportoinut apinoiden CMV -alkuperää koskevista kroonisen väsymysoireyhtymän (15) sekä lasten autismin (18) löydöksistään. Urnovitzin tekemät kromosomilöydökset veteraaneilla, jotka kärsivät Persianlahden sodan syndroomasta (20) puhuivat “monista enteroviruksen kaltaisista segmenteistä” epänormaaleissa kromosomeissa. Urnovitz huomautti myös, että käytännössä kaikki Persianlahden sodan veteraanit ovat saaneet suullisen poliorokotteen, mikä tarkoittaa että CMV-kontaminoitunut poliorokote on saattanut olla enterovirussegmenttien lähde (polio on enterovirus).

Kun ottaa huomioon tri. Martinin löydösten mahdolliset seuraamukset, on vain ihmeteltävä oliko näitä hämmentäviä havaintoja tarkoitus tutkia lisää, vai oltiinko asia jättämässä tuleville sukupolville?

Howard B. Urnovitzin työ ja The Chronic Illness Foundation

Tri. Urnovitz ja hänen kollegansa ovat tutkineet rokotteiden vaikutuksia syöpään, Persianlahden sodan syndroomaan, MS-tautiin ja AIDSiin. Urnovitz, jolla on sekä immunologian että mikrobiologian tohtorintutkinto Michiganin yliopistosta, jossa hän rokotteita tutki, oli muuttunut erääksi kaikkein äänekkäimmistä tieteentekijöistä, jotka olivat alkaneet puhua rokotteiden aiheuttamista geenimutaatioista. (19) Hänen työnsä tällä alalla on saanut selville mm. seuraavaa:

1. Kehoillamme on ulkoisten sen kohtaamien aineiden “geenimuisti”, johon kuuluu myös rokotteet.

2. On olemassa raja sille miten paljon materiaalia kehomme sietävät ennen kuin geenivaurioita esiintyy ja/tai ennen kuin ne muuttuvat kroonisiksi sairauksiksi.

3. Jokaisella on oma uniikki geneettinen kaavansa, joka vastaa eri aineeseen eri tavalla.

Vaikka Urnovitz ei kertonut enempää “geenimuistista”, hänen viittauksensa voidaan ymmärtää viittauksena siihen, että vanhemmiltamme perittyyn geneettiseen kaavaan vaikuttaa ja sitä mahdollisesti muuttaa adaptoituminen ympäristön eri vaikutteisiin elämämme aikana.

Ehkäpä Urnovitz ja kollegat tunnetaan parhaiten heidän Persianlahden sodan syndrooman (GWS) parissa tekemästä työstään, jossa he saivat selville näyttöä geenimuutoksista kromosomi 22q11.2:ssa, joka on tunnettu monista mutaatioistaan, joilla vaikuttaa olevan rooli GWS:n patogeneesissä. (20) Vieläkin silmiinpistävämpää on se miten he sekvensoivat löydöksensä, monien enteroviruksen kaltaisten segmenttien löytäminen viittaisi siihen, että tämä on voinut olla mukana aiheuttamassa muutoksia 22q11.2:een. Kuten aiemmin todettu, Persianlahden sodan veteraanit saivat rokotteen suullisena, enteroviruksen, mahdollisesti apinoiden CMV:n kontaminoiman.

Lisäksi raportin johdantokappaleessa kirjoittajat olivat listanneet kemikaalit, joille veteraanit olivat altistuneet Persianlahden sodan aikana, mm. kemiallisen sodankäynnin aineille, tutkimuskemikaaleille (esim. pyridostigmiinibromidi), organofosfaatti, karbamaatti ja muut hyönteismyrkyt, sekä myrkylliset palamistuotteet öljylähteiden ja diesel-kaasujen palaessa. Vaikka näitä ei oltu eritelty, listan mukaan ottaminen viittaa siihen, että myrkyllinen kemikaalialtistus on voinut olla kausaaliroolissa Persianlahden sodan syndroomassa ja sen mukanaan tuomissa geenimuutoksissa.

Tämän lisäksi jotkut geenisekvenssit on havaittu olevan peräisin muista, tunnistamattomista ei-ihmislähteistä. Tämä herättää kysymyksen siitä onko Urnovitzin ja John Martinin työn välillä yhteys, (14-18) suun kautta annettujen poliorokotteiden ja suun kautta tulleen polioviruksen apinoiden munuaissoluissa viljelemisen kautta, mikä näin kontribuoisi Urnovitzin raportissa mainitut ei-ihmissegmentti.

Urnovitzin (9, 20-22) tekemä työ asettaa rokotteiden aiheuttamat geenimutaatiot vakavaan valoon. Vanhempamme tarjoavat meille geneettisen koodin syntymässä, mutta tämä raaka geenimateriaali näyttää olevan muokattavissa ympäristön vaikutteista, mm. myrkyllisillä kemikaaleilla ja rokotteilla. Yllämainittuun informaatioon perustuen on sekä mahdollista että uskottavaa, että geneettisiä translokaatioita tapahtuu rokotteiden seurauksena. Se on varmastikin uskottava huoli.

Immunogenetiikka

Tieteentekijät eivät ymmärrä hyvin immuunijärjestelmämme genettiikkaa. Kutienkin monet tutkimukset esittävät vakavia implikaatioita. Yhtenä esimerkkinä MG Montinari ja hänen kollegansa tutkivat rokotteiden jälkeisiä keskushermostosairauksia (CNS) ja ihmisten leukosyyttien antigeenejä (HLA), jotka käytännössä ohentavat aivojen ja hermoston kudoksista myeliinipinnoitteen. (23)

HLA-järjestelmä on sellainen joka auttaa henkilön immuunijärjestelmää erottamaaan mitkä siitä ovat “omaa itseä” ja mitkä “ei-itseä”. Vaikka mekanismi on monimutkainen, se on järjestelmä joka alkiovaiheessa oppii tunnistamaan kehon terveen solun “omana itsenä” niin että nämä solut pysyvät koskemattomina immuunijärjestelmän etsi-ja-tuhoa-mekanismeilta, ja ne jättävät mekanismin suojaamaan kehoa ulkopuolisilta hyökkääjiltä.

Erikoishuolena on se, että HLA-järjestelmällä on myös alttiutta polymorfismiin (mutaatio), mutaatiot taas mahdollisesti johtavat itsetunnistuksen heikkenemiseen. Tämä prosessi voi olla juurisyy, tai se voi olla yksi pääsyistä autoimmuunisairauksille, joissa immuunijärjestelmä hyökkää kehon omien solujen kimppuun. HLA-järjestelmä on tässä prosessissa keskeisessä asemassa. (24) Kun HLA-järjestelmän alleelit mutatoituvat, kuten joskus virusinfektioiden, virusrokotteiden tai myrkyllisten kemikaalien aiheuttamien ympäristösairauksien tapauksessa, kehon immunogeneettinen muisti muuttuu. Antigeenin esittäminen immuunijärjestelmälle on tärkeää, ja tämän esityksen sotkeminen voi aiheuttaa sen että keho luulee normaalikudosta, kuten aivojen tai hermoston myeliini, hyökkääjäksi ja näin se hyökkää omaa itseään vastaan (autoimmuniteetti).

Montinari sai selville, että HLA:n tietyt alleelit (A3 & DR7) löytyivät potilailta useammin rokotteiden aiheuttamissa sairauksissa. Tämä viittaa sellaisten sairausten immunogeneettiseen syntyyn. Montinaria huoletti se, että rokotteiden lisäaineet kuten timerosaali aiheuttivat geneettisiä mutaatioita muuttamalla aminohappoja antigeeniproteiinien esityksessä (25-29), mikä voi olla syynä siihen että keho hämmentyy ja ryhtyy autoimmuunireaktioihin.

Lisähuolet rokotteiden aiheuttamista geenimutaatioista

Monet meistä tietävät The Human Genome Projectin, joka on yritys kartoittaa ihmisten geenien kaikki kromosomisijainnit. On tärkeää huomata, että geenien kartoittamisen tekniikka oikeasti sulauttaa ihmisen ja rotan kudoksia viljelyissä. Nämä solut, joita kutsutaan somaattisiksi ihmis-jyrsijäsoluiksi ovat itse asiassa sekä rotan että ihmisen kromosomit yhdistettynä. Ihmisten ja ei-ihmisten solujen hybridisaatio tapahtuu sekä kudosviljelmän avulla että toistuvien solusyklikierrosten avulla, joissa ihmisten kromosomeja “häviää”. Tämä mahdollistaa tieteentekijöille merkitä tiettyjä proteiineja ilmaisevia geenejä yksittäisiin ihmiskromosomeihin. (30)

Kun tiedetään, että sellainen hybridisaatio tapahtuu laboratorioprosesseissa ja se voidaan toistaa, pitää vain ihmetellä onko rokotteilla, jotka ovat kontaminoituneita ja tehty eri ihmisten, eläinten ja ei-ihmisten soluista/DNA:sta, samanlainen vaikutus ihmiskehoon.

PAlataksemme geneettisen kontaminaation aiheeseen, ja Ankerin ja Strounin työhön sekä ihmisen ja rotan solufuusioon, me tiedämme, että monet rokotteet käyttävät “kuolemattomia solulinjoja”, jotka ovat itse asiassa syöpäisen tyyppisiä soluja, joilla ei ole mitään rajaa sille miten monta kertaa ne voivat jakautua. Kaikkein yleisimmin tunnettu kudostyyppi on ihmisen diploidityyppi, joka on eristetty abortoidusta sikiöstä. On mahdollista, että nämä solut voivat hybridisoitua itsekseen. Itse asiassa, se on todennäköistä perustuen siihen mitä me tiedämme somaattisista ihmis-jyrsijäsoluista.

Lisäksi on huoli siitä, että nämä solulinjat kontaminoituvat helposti patogeeneilla ja levittävät syöpää (mutaatioita) aiheuttavaa materiaalia ihmisiin. (31-34)

Tietyt rokotteet kuten “rekombinantti”-, “aliyksikkö”- ja “puhdas-DNA”-rokotteet käyttävät geenimanipulaatiomenetelmiä tuotannossaan. Nämä tekniikat aiheuttavat huolta johtuen rokotteen ja ihmisproteiinin/DNA:n välisistä tuntemattomista reaktioista. FDA itse asiassa tunnustaa tämän huolen, jossa mutaatioita tapahtuu onkogeenien aktivaation tai kasvaimia poissa pitävien geenien poiskytkeytymisen tapauksissa, mikä aiheuttaa syöpää. Lisäksi he myöntävät, että vapaat nukleiinihapot helposti kulkeutuvat ja integroituvat solun genomiin, mikä mahdollisesti johtaa geenimutaatioihin. (35,36) Yksityiskohtaisempi ja teknisempi raportti, joka käy läpi monet rokotekontaminaatioiden aiheuttamat syövät ja geenivaikutukset huomauttaa, että jokaisen rokoteannoksen sallitaan sisältää 100,000,000 DNA-palasta, jotka ovat muita kuin virusta tai viruksella kontaminoituja osia. Me uskomme, että jokainen sallittu DNA-palanen on riski.

Tiivistelmä

Kirjeessä Science Magazinen päätoimittajalle, lokakuussa 1967, Joshua Lederberg, Stanfordin yliopiston lääketieteen laitoksen geeniosaston tutkija varoitti elävän viruksen rokotteista:

“Itse asiassa me manipuloimme biologisesti varsin suurella skaalalla eläviä viruksia massaimmunisaatiokampanjoissa… Yksinkertaiset viruspreparaatiot kuten yleisimmin käytössä tällä hetkellä olevat ovat myös haavoittuvaisia kontaminaatiolle ja väärintunnistukselle.” (38)

Suuremmassa mittakaavassa kyse rokotteiden mahdollisista geenivaikutuksista saattaa olla tieteellisen tiedon “musta aukko”. Vaikka sitä tapahtuisikin, onko meillä teknologiaa selvittää se, ja jos ei ole, onko meillä aikaa odottaa hitaita tiedeprosesseja sellaisten suhteiden selvittämiseksi? Tutkimukset Afrikasta, Englannista, Ruotsista ja Uudesta Seelannista ovat jatkuvasti näyttäneet lisääntyneiden allergiaongelmien kuten astman ja ihottuman esiintyvyyden, sekä sairauksien lisääntymisen, täysin rokotetuilla lapsilla verrattuna vajaasti tai ei ollenkaan rokotettuihin. (39-42) Vaikuttaa siltä kuin meille olisi käsittämätöntä että terveys voisi olla yksi asia ja genetiikka toinen, tai että nämä huonontuvan terveyden ilmiöt eivät toisi mukanaan vastaavia muutoksia geeneissä.

Meidän mielestämme tämä on yksi kaikkein olennaisimpia ongelmia, joita vastaamme on tullut, ja vanhemmat saavat vapaan tahdon hyväksyä tai hylätä rokotteet lapsiltaan perustuen informoituun suostumukseen. Aina kun katsoo luonnon maailmaa, löytää korjaavia prosesseja. Se on perussysteemi jolle Yhdysvaltain perustuslaki on muotoiltu ja jollaiseksi se on suunniteltu. Saman periaatteen tulsii soveltua lapsuusajan rokotteisiin. Ainoastaan tällä tavoin asiat voidaan korjata.

Lähdeviitteet

1. Robinson DS, Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma, New Engl J Med, Jan 30, 1992; 326: 298-304.

2. Holt PG, Sly PD, Allergic respiratory disease: strategic targets for primary prevention during childhood, Thorax, 1997; 52:1-4.

3. Immunobiology; The Immune System in Health and Disease, Charles Janeway, Paul Travers, Mark Walport. Donald Capra, Fourth Edition, Garland Publishing, New York, 1999:394-395.

4. Stroun M, Anker P, Transcription of spontaneously released bacterial deoxyribonucleic acid in frog auricles, J Bacteriology, April, 1973; Vol 114: 114-120.

5. Anker P, Stroun M, Bacterial ribonucleic acid in the frog brain after a bacterial peritoneal infection, Science, Nov. 10, 1972; 178:621-623.

6. Kumar S, Miller LK, Effects of serial passage of Autographa Californica Nuclear polyhedrosis virus in cell culture, Virus Research, 1987; 7:335-349.

7. Jahnke U, Fischer EH, Alvord EC, Sequence homology between certain viral proteins related to encephalomyelitis and neuritis, Science, July 19, 1985; 29:242-284.

8. Shoenfeld Y, Aron-Maor A, Vaccination and autoimmunity-‘vaccinosis’: a dangerous liaison?, J Autoimmun, Feb 2000, 14(1):1-10.

9. Urnovitz HB, Tuite JJ, Higashida JM et al, RNAs in the sera of Persian Gulf War Veterans Have Segments Homologous to Chromosome 22q11.2, Clinical and Laboratory Diagnostic Immunology, May, 1999; 6(3):330-335.

10. Vrijheid M, Dolk H, Armstrong L et al, Chromosomal congenital anomalies and residence near hazardous waste landfill sites, Lancet, January 26, 2002; 359:320-322.

11. Folic Acid, the Vital Nutrient that Fights Birth Defects, Cancer, and Heart Disease, Sidney M Baker, M.D., Keats Publishing, Inc., New Canaan, Connecticut, 1995.

12. Gupta S et al, Th1 and Th2-like cytokines in CD4+ and CD8+ T cells in autism, J Neuroimmunol, 1998; 85:106-109.

13. This story is related in the book, Emerging Viruses, AIDS and Ebola, by Leonard G Horowitz, D.M.D., M.A., M.P.H., Tetrahedron, Inc., Rockport, MA, 1997, pp 488-493.

14. Martin WJ, Ahmed KN, Zeng LC et al, African green monkey origin of the atypical cytopathic ‘stealth virus’ isolated from a patient with chronic fatigue syndrome, Clinical and Diagnostic Virology, 1995; 4:93-103.

15. Martin WJ, Anderson D, Stealth virus epidemic in the Mohave Valley, Pathobiology, 1997; 65:51-56.

16. Martin WJ, Genetic instability and fragmentation of a stealth viral genome, Pathobiology, 1996; 64:9-17.

17. Martin WJ, Consultation on detection of simian cytomegaloviruses in human tissue, (Presentation July 1, 1996 sponsored by the National Institute of Allergy and Infectious Disease (NIAID), held in the Solar Building, Rockville, MD).

18. Martin WJ, Stealth virus isolated from an autistic child, (letter to the editor), J Autism Developmental Disorders, 1995; 25(2):258.

19. Written testimony of Dr. Howard B Urnovitz, August 3rd, 1999, at the Committee on Government Reform and Oversight

20. Urnovitz HB, Tuite JJ, Higashida JM, Murphy WH, RNAs in the sera of Persian Gulf War veterans have segments homologous to chromosome 22q11.2, Clin Diagn Lab Immunol, May, 1999; 6(3):330-335.

21. Urnovitz HB et al, Increased sensitivity of HIV-2 antibody detection, Natural Med, 1997; 3:1258

22. Urnovitz HB, Murphy WH, Human endogenous retroviruses: nature, occurrence, and clinical implications in human disease, Clin Microbiol Rev, 1996; 9:72-99.

23. Montinari MG, Favoino B, Roberto A, Diagnostic role of immunogenetics in post-vaccine diseases of the CNS: preliminary results, Medit J Surg Med, 1996; 4(2):69-72.

24. Laurentaci G, Favoino B, Immunogenetica e malattie HLA associate, Oedalo Lilostampa Bari, 1999.

25. Migliore L, Nieri M, Evaluation of twelve potential aneuploidogenic chemicals by the in vitro human lymphocyte micronucleus assay, Toxic in Vitro, 1991; 5(4):325-336.

26. Shrana I et al, Mitosis and numerical chromosome aberration analyses in human lymphocytes: 10 known or suspected spindle poisons: Mutation Research, 1993; 287:57-70.

27. Miller BM, Adler ID, Aneuploid induction in mouse spermatocytes mutogenesis, Mutogenesis, 1992; 7(1):69-76.

28. Gudi R et al, Assessment of the in vivo aneuploidy/micronucleus assay in mouse bone marrow cells with 16 chemicals, Env Mol Mutagen, 1992; 20:106-116.

29. Ilse-Dore A, Synopsis of the in vivo results obtained with the 10 known or suspected aneugens tested in the CEC collaborative study, Mutation Research, 1993; 287:131-137.

30. Nelson Textbook of Pediatrics, 16th Edition, WB Saunders C., 2000, page 315.

31. Harasawa R, Latent Risk in Bovine Serums Used for Biopharmaceutical Production, http://www.asmusa.org/pcsrc/sumO2.htm

32. Levings RL, Wessman SJ, bovine diarrhea virus contamination of nutrient serum, cell cultures, and viral vaccines, Dev Biol Stand, 1991; 75:177-181.

33. Giangaspero M et al, Genotypes of pestivirus RNA detected in live virus vaccines for human use, J Vet Med Sci, 2001: 63(7):723-733. PMID 11503899

34. Harasawa R, Miznsawa H, Detection of Pestiviruses from Mammalian cell cultures by PCR, Procedings of 3rd Internat World Congress on Biomedical Sciences, 1996; 12.-9.-20 Riken, Isukuba, Japan, http://www.3iwc.riken.go.jp/congress/sympo/sbb0202/ako111/tit.htm

35. Ho M et al, Slipping through the regulatory net: ‘Naked’ and ‘free’ nucleic acids. TWN Biotechnology and Biosafety Series, No. 5, 2001. http://www.twnside.org.sg/title/biod5.htm

36. Points to consider on Plasmid DNA vaccines for preventive infectious disease indications. FDA/CBER, Office of Vaccine Research and Review, 1996, http://www.fda.govc/cber/glns/plasmid.txt

37. McRearden B, What is coming through that needle? The problem of pathogenic vaccine contamination, 2002, http://www.jefsutherland.org/complementary/vaccine_contamination_mcrearden.pdf

38. Lederberg J, Letter-to-the-Editor, Science, Oct. 20, 1967:313.

39. Shaneen SO et al, Measles and atopy in Guinea-Bissau, Lancet, June 19, 1996; 347:1792-1796.

40. Odent, MR, Pertussis vaccine and asthma; is there a link? JAMA, 1994; 271:229-231.

41. Alm JS et al, Atopy in children of families with anthroposophic lifestyle, Lancet, May 1, 1999; 353:1485-1488.

42. Kemp T et al, Is infant immunization a risk factor for childhood asthma or allergy?, Epidemiology, Nov., 1997; 8(6):678-680.

 

Artikkelin julkaissut whale.to

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *